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The embedded  a tom method  was used to examine  the shapes  and stability of  a series of  p la t inum 
clusters  with 5-60 a toms.  The calculations suggest  that the polyhedral  s t ructures  seen  in previous  
calculat ions are not stable. While the magic -number  icosahedrons ,  cubo-oc tahedrons ,  te t rahedrons ,  
and oc tahedrons  retain their shape at 0 K, they spontaneous ly  reconst ruc t  upon anneal ing to 300 K.  
The nonmag ic -number  t runcated  icosahedrons ,  cubo-octahedrons ,  te t rahedrons ,  and oc tahedrons  
spon taneous ly  recons t ruc t  even  at 0 K. A 147-atom icosahedron was also found to recons t ruc t  to 
a lower energy s t ructure  upon annealing to 500 K. In contrast ,  there are a series of  lower energy 
s t ructures  which are reasonably  stable at 100-300 K. These  lower energy s t ructures  are highly 
disordered and show surface s t ructures  which are not  present  in bulk plat inum. At this point  the 
calculat ions have not  yet  considered the effects of  the support .  However ,  these  resul ts  suggest  that  
small  plat inum clusters  may  be much  more  disordered than previous calculations suggest .  © 1992 
Academic Press, Inc. 

I. I N T R O D U C T I O N  

The shape and microstructure of small 
metal particles in a catalyst can have a major 
influence on the catalyst's activity and se- 
lectivity. Most of the ideal models of the 
shapes of particles in catalysts come from 
work in the 1960s. Hoare and co-workers 
(1-4) calculated the shapes of argon clusters 
at 10-60 atoms, and found that perfect ico- 
sahedral and cubo-octahedral geometries 
were favored in argon clusters of these 
sizes. Hoare's calculations have been veri- 
fied both experimentally (5) and computa- 
tionally (6-10) for solid argon and they have 
been used to make predictions about cata- 
lysts. However, it is unclear to what extent 
these calculations apply to metal particles 
in catalysts. For example, previous workers 
(11-14) have found that small fcc metal par- 
ticles supported on various substrates do 
not show the very regular particle shapes 
and structures predicted by Hoare's calcula- 
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tions. Instead, the particles have irregular 
shapes. Features such as twinning bound- 
aries and stacking faults are quite prevalent. 
Investigators say they observe icosahe- 
drons. However, the "icosahedral" parti- 
cles are always multiple twinned. Larger 
particles tend to have rounded shapes under 
clean conditions (15). Simple metals show 
non-icosahedral shapes even in the gas 
phase (34). Therefore, there is reason to sus- 
pect that these older calculations using 
argon potentials do not apply to platinum 
group metals. 

In this paper we have used a modern cal- 
culational procedure called the "Embedded 
Atom Method" (EAM) to determine the 
equilibrium shapes of small platinum clus- 
ters. The EAM technique was developed by 
Daw and Baskes (16) as a way of modeling 
the interaction of a metal atom with its sur- 
roundings. Basically, one divides the inter- 
action of an atom with its neighbors into two 
terms, a two-body repulsion due to overlap 
at the atom with adjacent atomic cores and 
a multibody attraction due to overlap of the 
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atom with the conduction and d-bond elec- 
trons from its neighbors, and uses semiem- 
pirical potentials for both terms. EAM has 
been used to successfully predict the struc- 
ture of small platinum clusters (3-6 atoms) 
adsorbed on Pt(100) field emitting tips (17, 
18). It also has been used to accurately pre- 
dict the stable surface reconstructions of the 
Pt(ll0) (19, 20), Pt(001) (18), and Pt(210) 
surfaces (21). Generally, the predicted 
structures show good agreement with exper- 
iment surface energies. The calculated sur- 
face energies are less accurate, but the vari- 
ation in the surface energy with surface 
structure does show the correct trends. The 
EAM has also been used successfully to 
model the shapes of copper and nickel clus- 
ters (22, 23). Therefore, there is reason to 
suspect that EAM may also give good struc- 
tural predictions for platinum clusters. In 
this paper, we use EAM to calculate the 
equilibrium structure and shape of platinum 
clusters containing 5-60 atoms. 

We did several different kinds of calcula- 
tions. The first was a stability analysis where 
we started with a fixed shape (e.g., an icosa- 
hedron) and did a conjugate gradient (CG) 
minimization (24) to calculate a relaxed 
shape. Such computations were conducted 
for platinum clusters ranging in size from 
N = 5 to N = 60 atoms. Calculations for the 
147-atom magic-number icosahedral cluster 
were also ~erformed. In addition, growth 
sequences were initiated to study some of 
the non-magic-number size clusters. Finally 
we did a series of simulated annealing stud- 
ies to assess the stability of our clusters, and 
to search for lower energy structures. 

II. METHODS 

All of the calculations in this paper were 
done using a slightly modified version of the 
EAM code provided by Foiles, Daw, and 
Baskes (16). The code divides Ei, the inter- 
action of an atom with its neighbors, into an 
embedding energy F,.,(pi), and an electro- 
static pair interaction term, qSu(Ru): 

1 
Ei = Fi(Pi) + ~ .~ ¢hij(Rij). 

i.j 

The embedding energy is defined as the en- 
ergy required to introduce atom i into the 
local electron density, Pi, created by the 
presence of the neighboring atoms. The 
pairwise repulsion term, qSij, is characterized 
by a Coulombic 1/r interaction, where the 
effective charges of the two atoms are func- 
tions of the interatomic separation. Foiles, 
Baskes, and Daw (25) have already created 
good semiempirical EAM functions for plat- 
inum and we used their functions without 
change. 

The cluster symmetries examined in this 
study were the icosahedron, cubo-octahe- 
dron, octahedron and the tetrahedron (see 
Fig. 1). The make-up of these clusters can 
be most conveniently visualized in terms 
of a shell or layer type construction. For 
example, the 55-atom icosahedron has 12 
atoms surrounding a central atom in the first 
shell and 42 atomic positions in the second 
shell. The so-called magic number repre- 
sents the total number of atoms in a cluster 
when the shell sites are completely filled. In 
this way, the icosahedron magic numbers 
turn out to be 13, 55, and 147 for the first, 
second, and third shell, respectively. The 
cubo-octahedron also has the same magic 
numbers as that of the icosahedron, but its 
structure is characterized by the presence 
of square (100) and triangular (111) facets 
while the icosahedron has only (111) facets. 
These facets on the icosahedron represent 
the surfaces of the tetrahedral units which 
comprise the cluster. Similarly, the first two 
tetrahedron magic-number clusters are 
composed of 5 and 57 atoms, whereas the 
complete octahedral symmetry is obtained 
with 7 and 45 atoms. The octahedron and 
cubo-octohedrons are fcc structures, while 
the tetrahedron and icosahedron have sym- 
metry elements which are not found in fcc 
materials. 

II[. RESULTS 

Our first calculation was to start with a 
cluster of known geometry, e.g., an icosahe- 
dron with bulk lattice parameters, and do a 
conjugate gradient minimization of the clus- 
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FIG. 1. The crystal shapes of  the magic-number poly- 
hedra: (a) N = 13 icosahedron (b) N = 55 icosahedron,  
(c) N = 13 cubo-octahedron,  (d) N = 55 cubo-octahe- 
dron, (e) 5-atom tetrahedron,  (f) 57-atom tetrahedron 
(g) 7-atom octahedron,  and (h) 45-atom octahedron.  

minimized 13-atom icosahedron,  added 
a toms at their icosahedral  posit ions in the 
second shell, and then did a minimization. 
We find that with 14 a toms,  the extra  a tom 
moves  into the first shell, and all of  the other  
first-shell a toms move  to accommoda te  it. 
The result is a compac t  structure.  Howeve r ,  
the five-fold symmet ry  of the 13-atom icosa- 
hedron core is lost. Even  larger distortions 
are seen with 18 atoms.  Hence ,  we con- 
cluded that neither the 14- nor the 18-atom 
truncated icosahedra are stable. 

This was a general trend; whenever  we 
started with a nonmagic-number  cluster  it 
relaxed into a far more compac t  structure.  
Clusters relaxed f rom truncated- icosahe-  
dron structures have the unfavorable  ver tex  
site eliminated and instead now have a more  
equitable distribution of coordinat ion num- 
bers.  We were able to create metas table  13- 
and 55-atom cubo-octahedra ,  5- and 57- 
a tom tetrahedra,  and 7- and 45-atom octahe-  
dra by first minimizing the energy of the 
cluster with respect  to the lattice dimension,  
relaxing each shell of  a toms independently,  
and then doing a final re-relaxation allowing 
all of  the a toms to move.  The magic-number  

(a)  (b)  

ter  shape. One might have thought that the 
particles would retain their basic shape,  
upon energy minimization. However ,  we 
quickly d iscovered  that with the except ion 
of the 13- and 55-atom (i.e., magic-number)  
icosahedra,  all of  the other  polyhedral  parti- 
cle shapes would spontaneously  reconstruct  
into lower energy structures with twins and/ 
or defects upon energy minimization. For  
example ,  Fig. 2 is an illustration of  the re- 
construct ions seen with 14- and 18-atom 
truncated icosahedra.  We started with a 

(c) (d) 

FIG. 2. An illustration of the shape changes which 
occur during the conjugate-gradient minimization of 
nonmagic-number truncated-icosahedral structures. 
(a) lnitial 14-atom truncated-icosahedron,  (b) relaxed 
14-atom structure, (c) initiall8-atom truncated-icosahe- 
dron, (d) relaxed 18-atom structure. 
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cubo-oc tahedra  created in this way were  
found to be  metas table  in that they remain 
in the same symmet ry  as the starting cluster  
after " r e - r e l axa t ion . "  The 45-atom octahe-  
dron and 57-atom te t rahedron distorted but 
only slightly. On the other  hand, all of  the 
nonmagic-number  clusters relaxed into 
structures which no longer resembled the 
starting polyhedral  symmetr ies .  Conse- 
quently,  it can be concluded that, in plati- 
num the polyhedral  shapes are not stable, 
except  at the magic numbers .  

III.1. Growth Sequences 

Still, we were  interested in finding a way 
to assess  the energies of  the nonmagic-num- 
ber  t runcated-polyhedral  structures,  and so 
we adopted a ra ther  ad-hoc procedure.  We 
started with a closed shell core of  a toms and 
added a toms one at a t ime at the correct  
second shell polyhedral  posit ions to pro- 
duce a growth sequence.  For  example ,  we 
started with a minimized 13-atom icosahe- 
dron and added a single a tom as shown in 
Fig. 2a. We then calculated the energy of 
the cluster. A second a tom was added with 
the criterion that its a tomic posit ion would 
minimize the total energy of  the cluster. This 
additional a tomic posit ion was chosen such 
that it would be appropr ia te  for an icosahe- 
dron. We emphas ize  that these are not 
minimized structures;  if we do an energy 
minimization the cluster  spontaneously  re- 
constructs  into an even lower  energetic state 
such that it would no longer resemble  the 
initial cluster  symmet ry .  

Figure 3 shows the growth sequence we 
have obtained,  for the icosahedral  structure. 
We start  with the 13-atom cluster  shown in 
Fig. 3 and add an atom. Referring back  to 
Fig. 1, note that the a tom can go into either 
an edge site or a ver tex site. However ,  we 
find that energetically,  it is more  favorable  
for the a tom to go into the edge site than into 
the ver tex site. The a tom has more  nearest  
neighbors at the edge site. As a result, the 
embedding energy is larger at the edge site 
than the ver tex site. The 15th a tom and 16th 
a tom also go into an edge site. When there 
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(ii) (ii) 
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FIG. 3. A growth sequence calculated by starting 
with a 13-atom relaxed icosahedron and adding atoms 
in the best icosahedral positions. Note that none of 
these clusters are stable. If we do a conjugate gradient 
minimization the clusters will relax as shown in Fig. 2. 

is a 14th a tom on the edge site, it is slightly 
more  favorable for the 15th a tom to occupy  
an adjacent edge site than to occupy  an edge 
site far away from the 14th atom. As a result, 
the 15th a tom goes on an edge site which is 
in close proximity to the 14th atom. The 
16th a tom also goes on an edge site to fill 
out the edges of  a face,  then the 17th a tom 
goes on the ver tex between the 14th, 15th, 
and 16th atom. The 18th a tom goes to an 
edge site adjacent to the 14th, 15th, and 16th 
atom, and the sequence repeats .  This pat- 
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FIG. 4. The energy per atom minus the bulk energy 
per unit calculated for a growth of an icosahedral clus- 
ter with a frozen 13-atom core. Curves for the minimum 
energy clusters, and platinum clusters at 2000 K are 
included for comparison. 

tern of  filling of three or four  edge posit ions 
fol lowed by a single ver tex a tom is contin- 
ued until the second shell is occupied.  The 
last two posit ions in the growth sequence,  or 
the least stable, happen to be ver tex a toms.  

Figure 4 shows the energy /a tom minus 
the bulk energy/uni t  a tom calculated for the 
clusters in the growth sequence in Fig. 3. 
The figure also included plots of  the energy 
of  a set of  fully relaxed "min imum-ene rgy  
c lus te r s , "  see Section 111.2, and the ener- 
gies calculated f rom Monte  Carlo simula- 
tions of  liquid clusters at 2000 K. 

At 13 a toms the icosahedron is fairly sta- 
ble, but if we add a 14th a tom in the icosahe- 
dral posit ion the cluster energy jumps  mark-  
edly. Referring back to Fig. 3, note that 
when we force the 14th a tom into an icosa- 
hedral position, the 14th a tom has only two 
nearest  neighbors.  By compar ison ,  the a tom 
would have three nearest  neighbors if it 
were  at a three-fold hollow, and nine nearest  
neighbors in the fully relaxed position 
shown in Fig. 2b. Energetically it is ra ther  
unfavorable  to add the 14th a tom in an icosa- 
hedral position. As a result, the energy at 
the cluster  j umps  when we force the a tom 
to go into the icosahedral  position. This fea- 
ture in the growth sequence is not limited 

to our EAM calculations but has also been  
observed  in calculations using the older 
argon pair potentials (26). 

The energy/a tom goes up with the 15th 
a tom too, but then the energy /a tom goes 
down with the 16th a tom and the 17th a tom.  
The 18th and 19th a tom decrease  the energy 
slightly. However ,  the 20th a tom has a 
larger effect, since 20 a toms fill a comple te  
face in the final icosahedron.  This trend con- 
tinues with increasing size. Howeve r ,  even  
with 55 atoms,  the cluster still has an energy 
of  0.6 eV above  the bulk. 

We have also done growth calculations 
for cubo-octahedral ,  octahedral ,  and tetrag- 
onal clusters. Figure 5 compares  the energy/  
unit a tom calculated for these other  cluster  
shapes to those for icosahedra.  Note  that o f  
the four different cluster symmetr ies  exam- 
ined only the icosahedron and the cubo-  
oc tahedron are energetically compet i t ive.  
The te t rahedron and the oc tahedron  are es- 
pecially unstable at the nonmagic -number  
sizes. With small clusters the total energy 
of  a cluster with tetrahedral  coordinates  is 
even higher than the corresponding liquid 
cluster at 2000 K. The cluster  sizes in the 
middle of  the growth sequence are similar 
in energy and shape irrespective of  the initial 
polyhedra.  Physically,  however ,  the various 

> 3 
LU 

LU 2 

=,  

E 

,,9 

- 0 . 4  

• 2000  K (Liquid) 
~ .  x Oc tahedron  

v Te t rahedron  
~, Cubo-oc tahedron  
o l, co..sahedron ,, 

Energy  

I E I I I I 
10 20 30  40 50 60 70 

N u m b e r  O f  A t o m s  In Cluster 

FIG. 5. The energy per atom minus the bulk energy 
per atom for the growth of (G) truncated icosahedra, 
(A) truncated cubo-octahedra, (V) truncated tetrahe- 
dra, ( x ) truncated octahedra, (11) platinum clusters at 
2000 K, and (+), the "minimum energy" clusters. 
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N=25 N=30  

0 
a) Icosahedron 

b) Cubo-octahedron 

"0 
c) Tetrahedron 

FIG. 6. A comparison of the structure o f N  = 25 and 
N = 30 truncated icosahedra, truncated cubo-octahe- 
dra, and tntncated tetrahedra. 

s t ructures  are not that much  different in the 
middle of  the growth sequence,  see Fig. 6. 

There  is a small anomaly  in Fig. 5 because  
we have  f rozen the a toms in the core in their 
initial posit ions.  According to our calcula- 
tion a 13-atom icosahedron has a lattice di- 
mension of  2.50 A. Howeve r ,  the core ex- 
pands  to 2.58 A when the second shell is 
added to the layer.  By freezing the core,  we 
have  not allowed these changes in lattice 
dimension to occur.  In order  to assess the 
effects  of  the changes in the core dimension 
on the growth sequence,  we also calculated 
an evapora t ion  sequence where  we started 
with a cluster  with two or more  complete  
shells and sequentially r emoved  a toms with- 
out relaxing the atomic positions. The re- 
sults were  very  similar to those in Figs. 3, 
4, and 5. The site-filling sequence was identi- 
cal in the evapora t ion  sequence and in the 
growth sequence.  Howeve r ,  the energies 
were  slightly different. Hence ,  we have in- 

cluded Fig. 7 a plot of  the energies /a tom 
calculated f rom the evaporat ion sequence.  

111.2. Annealing Sequences 

We have  also done simulated annealing of  
the clusters using a Monte  Carlo scheme.  
In a typical annealing sequence we would 
anneal a cluster at 300-500 K, and then use 
a conjugate gradient energy minimizat ion 
technique to quench the clusters to 0 K. The 
results of  these calculations showed that  
none of the polyhedra  clusters are stable, 
upon annealing to 300 K. I f  we allow all of  
the a toms to move,  the nonmagic -number  
clusters will spontaneously  recons t ruc t  at 
0 K. The magic-number  (i.e., filled-shell) 
clusters are stable at 0 K. Howeve r ,  they 
spontaneously  reconst ruct  into lower  en- 
ergy structures upon annealing at 300 K. So 
far we have only done extensive calcula- 
tions with clusters of  60 a toms or less. How-  
ever,  our initial work  with larger clusters 
indicates that even the 147-atom icosahe- 
dron reconstructs  to a s tructure with a 1-eV 
lower energy upon annealing to 500 K. 

In order to try to find clusters which were  
stable upon annealing, we did a series of  
calculations where we repeti t ively annealed 
the clusters at 500 K,  quenched to 0 K, and 
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Fie. 7. The energy per atom minus the bulk energy 
per atom for the evaporation of atoms from (©) trun- 
cated icosahedra, (&) truncated cubo-octahedra, (V) 
truncated tetrahedra, (x )  truncated octahedra, ( I )  
platinum clusters at 2000 K, and (+)  the "minimum 
energy" clusters. 
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FIG. 8. A comparison of the properties of the 13- 
atom icosahedron to the properties of the minimum 
energy 13-atom structure: (a) diagrams of the clusters, 
(b) the distance between the outer shell atoms and 
the central atom, (c) the distribution of interatomic 
distances in the clusters. 

looked for clusters with especially low ener- 
gies. Generally, we annealed for 2000 MC 
steps, with an acceptance probability of 
0.5-0.6, and then quenched using a conju- 
gate gradient scheme. This procedure was 
repeated for a total of 2,000,000 MC steps 
and we saved the minimum value structures 
from all of the runs. It is generally accepted 
that it is all but impossible to prove that the 
clusters found in this way do represent the 
energetically absolute minimum structure. 
However, care was taken to ensure that the 
final "minimum-energy" structure was not 
dependent upon either the number of total 
iteration steps or the configuration of the 
starting cluster. 

Figures 8 and 9 show some of the mini- 
mized cluster shapes we have found, while 
Table 1 lists the energies of the 13- and 55- 
atom icosahedra, cubo-octahedra, and the 
"minimum-energy" clusters. The 13-atom 
cluster rearranges to a very asymmetric 

shape upon annealing. This central atom in 
the 13-atom minimum-energy cluster does 
not have what could be characterized as 
nearest neighbors, but instead has neighbors 
with distances ranging from 2.55 to 3.12 
as illustrated in Fig. 8. By comparison, the 
interatomic distances from the central atom 
to the surface positions in a relaxed icosahe- 
dron were all 2.50 A. As the clusters get 
larger they assume the spherical shapes 
shown in Fig. 9. Note that these structures 
are much more compact than the truncated 
polyhedra, at the same sizes, which partially 
explains their stability. 

The minimum-energy clusters of sizes ly- 
ing between the magic numbers are similar 
to all of the others in the series in that their 
radial distribution histograms a compilation 
of all the interatomic distances in the cluster 
display a more gradual spread in the in- 
teratomic separations as shown in Fig. 10. 
There are however, two different regions of 
maxima in these histograms, one located in 
the 2.4-2.8 A range and the other in the 4-5 
,~ range. This feature is reminiscent of the 
shell-like make up of the icosahedral cluster. 
Another noteworthy attribute of these mini- 
mum energy clusters is the absence of any 
fivefold coordinated surface sites such as 
those found on the vertex of a icosahedron. 
In its place is the formation of the sixfold 
coordinated surface sites. 

There is one other feature in the calcula- 
tions, which was that at the smallest sizes, 
several different cluster shapes all had simi- 
lar energies. Bigot and Minot (27) also found 
that in Htickel calculations small platinum 

TABLE l 

Energies of the 13- and 55-Atom lcosabedron, Cubo- 
Octahedron, and Minimum-Energy Cluster 

Energy (eV) 

Cluster 13-Atom 55-Atom 
Icosahedron - 57.705 - 272.807 
Cubo-Octahedron - 56.704 - 270.163 
Minimum-Energy 58.431 - 273.764 
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N = 15 N = 2 0  N = 23  

,S 

N = 30  N = 35 N = 4 0  

N = 50  N = 55  N = 60  

Fie. 9. The structure of the minimum-energy clusters with 15, 20, 23, 30, 35, 40, 50, 55, and 60 atoms. 

clusters many different cluster shapes show 
similar energies. For example, Fig. l l 
shows a series of 13-atom clusters which all 
have an energy within 0.4 eV of the mini- 
mum-energy cluster. All of the clusters have 
an energy at least 0.5 eV below that of a 13- 
atom icosahedron. Notice that the geome- 
tries are different. None of the clusters dis- 

plays any apparent symmetry. In contrast, 
the corresponding 13-atom icosahedron is 
very symmetric. At this point, we cannot 
characterize these geometries. However, 
our general finding is that there are many 
defect structures with very similar energies. 

The implication of this result is that there 
is no single equilibrium shape of clean plati- 
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FIG. 10. A comparison of the distribution of atom-atom distances in the (a) 55-atom icosahedron, (b) 
55-atom cubo-octahedron, (c) minimum-energy 55-atom cluster, and (d) minimum-energy 60-atom 
cluster. 

num in this size range. Rather, at any finite 
temperature there should be a wide distribu- 
tion of cluster shapes in any given sample. 

IV. DISCUSSION 

Of course, experimentally there is already 
ample evidence for such a conclusion. For 
example, in TEM, small supported platinum 
particles usually show irregular shapes with 
many defects (12-14). People often observe 
"icosahedral" particles with many defects 
and twins. However, so far no one has re- 
ported seeing a defect-free icosahedral plati- 
num particle. 

Our calculations predict that highly de- 
fected structures should predominate at 
smaller particle sizes. The magic-number 
icosahedra do show some stability. How- 
ever, defected structures are predicted to be 
even more stable, in agreement with exper- 
iment. 

Recently, other calculations to determine 
the shape and electronic structure of ele- 
mental clusters have called into question the 
notion that the icosahedron is the most sta- 

E = -58.431 eV E = -58.407 eV 

E = -58.317 eV E = -58.275 eV 

E =-58.241 eV E = -58,193 eV 

FIG. 11. A series of 13-atom clusters with similar 
energies but far different geometries. 
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T h e  E n e r g i e s  o f  t h e  I n d i v i d u a l  A t o m s  in  t h e  1 3 - A t o m  I c o s a h e d r o n  a n d  t h e  M i n i m u m - E n e r g y  1 3 - A t o m  C l u s t e r  

A t o m  N o .  1 3 - A t o m  i c o s a h e d r o n  1 3 - A t o m  " m i n i m u m - e n e r g y "  

E m b e d d i n g  C o r e  T o t a l  E m b e d d i n g  C o r e  T o t a l  

e n e r g y  r e p u l s i o n s  e n e r g y  e n e r g y  r e p u l s i o n s  e n e r g y  

( e V )  ( e V )  ( e V )  ( e V )  ( e V )  E ( e V )  

1 ( C e n t e r )  - 1 3 . 8 8  1 0 . 0 7 4  - 3 . 8 1 1  - 1 0 . 2 6  4 . 8 6 1  - 5 . 4 0 2  

2 - 8 . 2 7 2  3 . 7 8 l  - 4 . 4 9 1  - 1 0 . 7 3  6 . 4 8 8  - 4 . 2 3 7  

3 - 8 . 2 7 2  3 . 7 8 1  - 4 . 4 9 1  - 10 .91  6 . 4 9 8  - 4 . 4 1 5  

4 - 8 . 2 7 2  3 . 7 8 1  - 4 . 4 9 1  - 1 0 . 5 9  6 . 2 2 5  - 4 . 3 6 6  

5 - 8 . 2 7 2  3 . 7 8 1  - 4 . 4 9 1  - 8 . 5 8  3 . 9 1 9  - 4 . 6 6 0  

6 - 8 . 2 7 2  3 . 7 8 1  - 4 . 4 9 1  - 1 0 . 9 8  6 . 6 5 3  - 4 . 3 3 0  

7 - 8 . 2 7 2  3 . 7 8 1  - 4 . 4 9 1  - 1 0 . 8 0  6 . 4 1 3  - 4 . 3 9 1  

8 - 8 . 2 7 2  3 . 7 8 1  - 4 . 4 9 1  - 1 0 . 5 5  6 . 1 9 6  - 4 . 3 5 9  

9 - 8 . 2 7 2  3 . 7 8 1  - 4 . 4 9 1  - 1 0 . 8 4  6 . 4 0 4  - 4 . 4 3 8  

10 - 8 . 2 7 2  3 . 7 8 1  - 4 . 4 9 1  - 1 0 . 9 3  6 . 5 0 9  - 4 . 4 2 0  

11 - 8 . 2 7 2  3 . 7 8 1  - 4 . 4 9 1  - 1 0 . 6 0  6 . 2 2 6  - 4 . 3 7 7  

12 - 8 . 2 7 2  3 . 7 8 1  - 4 . 4 9 1  - 8 . 9 1  4 . 2 3 4  - 4 . 6 7 3  

13 - 8 . 2 7 2  3 . 7 8 1  - 4 . 4 9 1  - 1 0 . 3 7  6 . 0 0 7  - 4 . 3 6 4  

ble configuration for a 13-atom system. By 
using a density functional molecular dynam- 
ics approach in conjunction with dynamical 
simulated annealing, Kumar and Car (28) 
have ascertained the optimum shape of a 13- 
atom magnesium cluster as a fusion of a 4- 
atom polytetrahedral and a 9-atom trigonal 
prism cluster. This geometry was found to 
be 0.043 eV/atom and 0.032 eV/atom lower 
in energy than an icosahedron and a cubo- 
octahedron respectively. Investigations (29) 
using the same calculation methods for sili- 
con clusters showed no similarity between 
the icosahedron and the 13-atom low-energy 
dynamically simulated annealed structures. 
Similarly, Bernholc and co-workers (32) 
have also shown that the 13- and 55-atom 
aluminum clusters can attain more stable 
structures than the icosahedron and cubo- 
octahedron. Not only are their geometries 
significantly more distorted than the latter 
two polyhedral symmetries, but several 
structurally inequivalent but energetically 
degenerate were found to exist. Ours is the 
first calculation to show that irregular 
shapes should be stable for platinum in clus- 
ter sizes greater than 12 atoms. However, 
there is already ample evidence for the sta- 

bility of irregularly shaped particles from 
other sources. 

Another prediction of the calculations is 
that we do not expect platinum particles to 
show sharply varying stability with varying 
particle size. Previous workers have found 
that many metals show distinct shell struc- 
ture, where certain key sizes are unusually 
stable. However, Kaldor and co-workers 
(33) have found that platinum clusters 
formed by condensation of platinum in the 
gas phase show a random size distribution. 
No size predominates. Our calculations 
show that the energy of our minimum energy 
clusters varies smoothly with cluster size. 
There are no sizes which show enhanced 
stability in the calculations in agreement 
with Kaldor's measurements. 

In summary then, our calculations sug- 
gest that small platinum particles should 
show disordered structures, and no magic 
numbers. These results agree with exper- 
iment. 

IV.1. The Origin of the Highly Defected 
Structures 

It is interesting to consider why the de- 
fected structures form. Table 2 compares 
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the potential energies for the individual 
atoms in a 13 atom icosahedron to those for 
the minimum energy cluster. Notice that the 
main advantage in the energy for the mini- 
mum-energy structure is derived from the 
energy difference at the central atom posi- 
tion (atom no. 1). Atom nos. 5 and 12 also 
exhibit slight energetic gains and contribute 
towards the enhanced stability of the mini- 
mum energy cluster. However, the re- 
maining atomic positions have higher en- 
ergy values than the equivalent relaxed 
icosahedron positions. 

This energy difference between the cen- 
tral atom in the two structures comes about 
in the calculations because of enhanced 
repulsions at the core of the 13-atom icosa- 
hedron. The electron density at the core 
atomic position of the icosahedron is by 
far the highest and this in turn corresponds 
to a large embedding energy. However, 
the atom also has 12 nearest neighbors 
which are compressed into the central 
atom, and thereby impart a significant re- 
pulsive force. It happens that the repulsive 
forces largely counteract the attractive 
forces which leads to the total contribution 
of only -3.81 eV at the central atom 
position. The 12 equivalent surface atoms, 
though embedded in a weaker electron 
density, are less burdened with the repul- 
sive electrostatic pair component of the 
potential due to the presence of fewer 
nearest neighbors. The resulting energy of 
an individual surface atom, -4 .49  eV, is 
actually lower than the core atom. 

In contrast, with the "minimum-energy" 
13-atom cluster, the electron densities fall 
within the density limits of the icosahedral 
atoms, i.e., 0.022-0.054 ~-3. A more even 
distribution such as this is a result of the 
seemingly arbitrary arrangement of the 
atoms in the cluster and follows a similar 
trend in the interatomic separations ob- 
served in the radial distribution histograms. 
The energetic gain over the icosahedron is 
made at the central atom which has only 
nine neighbors with interatomic distances of 
3 A or less. Compare this value with the 
central icosahedral atom which has 12 

neighbors with a lattice parameter of 2.50 
A. So, although the electron density and the 
resulting embedding energy of the central 
atom in the "minimum-energy" cluster are 
lower, the decreased repulsive interactions 
result in a more favorable energetic outcome 
for the overall cluster. The advantage gained 
at this position is sufficient to offset the 
losses absorbed at most of the remaining 
surface positions. 

It is not immediately obvious why the cen- 
tral atom has so much higher of an energy 
in the icosahedron than in the minimum- 
energy cluster. However, we believe that 
the difference is associated with the way 
which surface tension compresses the 13- 
atom cluster. If we start with a 13-atom clus- 
ter, and freeze the atoms in their bulk posi- 
tion, we find that the energy of the central 
atom increases continuously as we remove 
atoms from the cluster as illustrated in Fig. 
12. However, our calculations indicate that 
with a minimized 13-atom cluster, the plati- 
num atoms are only 2.5 A apart. This com- 
pares to 2.77 ,& in the bulk. The compression 
is interesting in that the atoms are so tightly 
packed that when we remove one atom, the 
energy of the core atom goes up! (See Fig. 
12.) The energy of the central atom attains 
the most energetically favorable state when 
it is surrounded by only eight surface atoms. 
The inclusion of the remaining four atoms 
to complete the first shell of the icosahedron 
results in an increase in the energy of the 
central atom. This outcome has implications 
in the determination of optimum coordina- 
tion numbers of an atom in a cluster. Ac- 
cording to the calculations it is best to have 
a maximum of eight nearest neighbors 
within an icosahedral framework when the 
lattice dimension is compressed to 2.5 A. 
Any further increase in the number of near- 
est neighbors causes the cluster to be less 
energetically stable. 

Physically, when the lattice is com- 
pressed, the overlap between the bonding 
electrons in the various atoms increases. 
One gets as much bonding with 8 nearest 
neighbors in the compressed lattice as one 
gets with 12 nearest neighbors in bulk plati- 
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num. There is still some additional overlap 
when the 9, 10, 11, and 12 nearest neighbor 
atoms are added to the cluster which pro- 
duces a higher embedding energy (i.e., 
slightly more bonding). Also, the nonlinear- 
ity or curvature in the embedding function 
for platinum is such that there is insufficient 
extra bonding to sustain the additional re- 
pulsive forces brought upon by squeezing 
four additional neighbors around the central 
atom. As a result, when the 13-atom cluster 
is compressed by surface tension, the cen- 
tral atom would only like to have 8 nearest  
neighbors rather than the 12 nearest  neigh- 
bors in the bulk. This causes the 13-atom 
icosahedron to reconstruct .  

The 55-atom cluster shows different be- 
havior, however.  Like the 13-atom icosahe- 
dron, in the two-layer 55-atom icosahedron 
the central atom possesses the highest elec- 
tron density and also the lowest embedding 
energy, but unlike the 13-atom cluster this 
central atom also has the most favorable 
total energy. Physically, the lattice com- 
pression is smaller with a 55-atom cluster so 
the central atom is still stable. However ,  the 
atoms at the verticies in the surface of the 
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icosahedron are very unstable. The atoms 
at the vertices of the icosahedron only have 
five nearest  neighbors. They  have a low em- 
bedding energy which implies that they have 
little bonding. It works out to be energeti- 
cally favorable to eliminate the ver tex posi- 
tions, by distorting the rest of  the cluster. 
There are no ver tex positions in the 55-atom 
"min imum-energy"  cluster. Instead, the 
electron densities are now more evenly dis- 
tr ibuted and like in the 13-atom case, well 
within the boundaries set forth by the upper 
and lower limits of  the 55-atom icosahedron. 
We believe that it is the instability of the low 
coordination ver tex sites which causes the 
55-atom icosahedron to reconstruct .  

We have also observed reconstruct ions 
with a 147-atom icosohedral  cluster. The 
vertices round out, and the energy of  the 
cluster decreases by about 1 eV. So far our 
calculations for the 147-atom cluster are in- 
complete and so it is unclear whether  we 
have found the minimum-energy shape for a 
147-atom cluster. However ,  the calculations 
so far show that even a 147-atom icosohe- 
dron is unstable to defect formation. 

The observations on the structure and 
shape of  these minimum-energy clusters 
should enable us to say a few words about  
the factors influencing the stability of  small 
metal clusters. Compactness  of  the cluster 
it is believed (30) is partly an indicator of  
enhanced stability as it leads to an increase 
in the effective coordination number  of the 
cluster. This postulation was supported by 
the extended Hfickel calculations (27) on 
Ptn(n = 2-13) clusters, which showed that 
the optimum cohesive energy of the cluster 
is achieved when the cluster is more spheri- 
cal and compact .  

The main force acting upon the surface of  
the cluster is the surface tension, which is 
sometimes referred to as the strain energy. 
Surface tension has the tendency to pull the 
atomic cores on the surface closer to the 
center.  This compresses the atoms, and so 
it costs energy to fill up the inner shell. In 
the case of  the 13-atom platinum cluster the 
compression causes the optimum number  of 
nearest  neighbors to change from 12 in the 
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bulk to 8 in a small cluster. It is the trade-off 
between the surface tension and repulsions 
caused by a lattice compression which de- 
termines the final shape of the cluster. In 
larger clusters the effects of the surface ten- 
sion are distributed over a much larger sur- 
face area thereby reducing the number of 
defect structures on the surface. 

Still multiple twin and stacking faults are 
seen even in moderate sized platinum parti- 
cles (11). Previous investigators have hy- 
pothesized that shapes to the interactions 
between the surface twin-boundary and 
elastic strain energies in a particle (13, 31). 
Our results give strong theoretical support 
to these previous hypotheses, and show 
quantitatively how the strain (i.e., surface 
tension) changes the particle shapes. 

V. IMPLICATIONS AND SPECULATION 

In summary then, the results in this paper 
show metal particles in catalysts are proba- 
bly not going to show the cubo-octahedral 
or icosahedral structures predicted by 
Hoare (for argon). Rather other less regular 
shapes should predominate. We find that 
defected structures have a lower energy 
than any of the regular polyhedra at sizes up 
to 60 atoms. We are now doing calculations 
for larger sized clusters, and have found that 
even the 147-atom icosahedron reconstructs 
to a lower energy structure upon annealing 
at 500 K. There is a need to verify these 
results with some other calculational tech- 
nique. However, our results suggest that in 
contrast to what it says in most textbooks 
one should not expect to observe perfect 
icosahedrons or cubo-octahedrons in sup- 
ported platinum catalysts. 

Of course, the calculations described 
above apply only to isolated unsupported 
platinum clusters. Hence, some care has to 
be taken before extrapolating these results 
to real supported catalysts. It can be ex- 
pected that once the support effects are in- 
corporated in these simulations that some 
changes would be observed in the structures 
of the stable cluster geometries. It was 
found that a number of cluster geometries 
could exist for a given size with only mini- 

mal differences in total energy. These ener- 
getic isomers are commonly observed in 
clusters prepared in the gas phase as is evi- 
denced by the wide distribution of the mass 
spectrum. Therefore only a slight contribu- 
tion due to a support effect could conceiv- 
ably result in a different "minimum-energy" 
cluster geometry. It is quite possible our 
minimum-energy cluster may not be the 
minimum-energy cluster in a supported plat- 
inum catalyst. 

However, we can say that it is very likely 
that the most stable platinum cluster is going 
to be high defected. In our calculations, the 
defected structures were 1-2 eV below the 
icosahedrons. It is difficult to imagine how 
the energy of an icosahedron could be low- 
ered enough to stabilize the icosahedron in 
the presence of the support. Certainly, per- 
fect icosahedrons are not seen experimen- 
tally. 

It is also very likely that the smallest parti- 
cles in supported platinum will show surface 
structures which are unstable in bulk plati- 
num. Our clusters are very asymmetric. 
There are surface structures in our calcula- 
tions which do not exist in bulk platinum. 
Our particle shapes seem to have some cor- 
respondence to the ones seen experimen- 
tally.Therefore, there is reason to suspect 
that one might also observe highly defected 
surface structures in supported platinum 
catalysts if one could find a way to measure 
the surface structure. 

At this point, we do not even have 
the nomenclature needed to describe the 
surface structure of our clusters, and 
so we cannot really describe the types of 
surface sites available for reaction. How- 
ever, it is clear that the old ideas about 
what surface structures of supported par- 
ticles are like do not apply to our particles. 
Hence, there is a need to rethink what 
particles are like in catalysts based on our 
findings. 
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